Statistical study of the IMF flow-aligned component impact

on the current sheet structure in Marian magnetotail

10/29/2021, Institute of Geology and Geophysics, Beijing Yuanzheng Wen
Advisor: Prof. Zhaojin Rong, Prof. Hans Nilsson wenyuanzheng@stu.cdut.edu.cn

Outline

$>$ Introduction

$>$ Motivation

>Our Work

- Method
- Case study
- Statistical study
- Conclusion and future work
>Question \& Answer.
>Discussion.

Introduction

Bagenal et al., (2015)

Brain et al., (2015)

Introduction

Image Credit: CU Boulder LASP

Introduction

Introduction

DiBraccio et al., (2018)

1. Mars' magnetic tail, called the "magnetotail," is the region of the Martian magnetosphere that extends behind the planet.
2. The magnetotail consists of two magnetic lobes:

- One directed towards Mars
- One directed away from Mars

Introduction

MARS CRUSTAL MAGNETISM $\Delta \mathrm{B}_{\mathrm{r}} \quad$ MARS GLOBAL SURVEYOR MAG/ER

Connerney et al., PNAS, 2005

Introduction

Slice of the current density vector at $\mathrm{X}=-1.1 R_{M}$. Left: without crustal fields. Right: with crustal fields.

Introduction

DiBraccio et al., (2018)

Introduction

Image Credit: Tristan Weber/University of Colorado

Introduction

Prior Understanding

New Understanding

Image Credit: NASA/GSFC

Motivation

McComas et al., (1986)

Our work

MAVEN's orbit (side view)

1. MAVEN's orbit precesses about Mars to sample different regions of the Martian atmosphere and magnetosphere.
2. Observations of solar wind enable monitoring of upstream parameters and solar activity
3. In order to determine how the magnetotail responds to changes in solar wind and IMF, we look for orbits where MAVEN measures the upstream solar wind and the magnetotail

Gruesbeck et al., (2018)

Our work

Selected MAVEN crossing of Martian magnetosphere under steady IMF conditions

- Selected MAVEN magnetospheric crossings from Oct 2014-Feb 2020 based on magnetic field data from MAG and ion energy spectrogram from SWIA. (7684 crossings)
- B1 (B2) averaged IMF 30 min before (after) bow shock inbound (outbound) crossings.
- Steady IMF criteria: 1. Angele between B1 and B2 less than $30^{\circ} 2$.
$\frac{2 \| \mathbf{B}_{1}\left|-\left|\mathbf{B}_{2}\right|\right|}{\left|\mathbf{B}_{1}\right|+\left|\mathbf{B}_{2}\right|}<0.2$ (Rong et al., 2014, 2016)
- Selected MAVEN crossings of Martian magnetosphere under steady IMF conditions. (1445 crossings)

Our work

Selected MAVEN crossing of Martian magnetosphere under steady IMF conditions

Example of MAVEN magnetospheric crossing on 2014-12-22

Our work

Selected good current sheet crossing cases

Examples of good current sheet crossing cases. CS crossing is identified by change of Bx sign and enhancement of ion, electron flux.

Our work

Selected good current sheet crossing cases

Our work

Selected good current sheet crossing cases

Examples of good current sheet crossing cases.
CS crossing is identified by change of Bx sign and enhancement of ion, electron flux.

Our work

Applied Minimum Variance Analysis (MVA) [Sonnerup and Scheible, 1998]

- $\sigma^{2}=\frac{1}{M} \sum_{m=1}^{M}\left|\left(\boldsymbol{B}^{(m)}-\langle\boldsymbol{B}\rangle\right) \cdot \widehat{\boldsymbol{n}}\right|^{2}$
- $\sum_{\nu=1}^{3} M_{\mu \nu}^{B} n_{v}=\lambda n_{\mu}$
- Set up local Cartesian coordinates $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ for a current sheet. $\mathbf{x}_{1}, \mathbf{x}_{2}$, and \mathbf{x}_{3} are orthogonal eigenvectors ($\mathbf{x}_{3}=\mathbf{x}_{1} \times \mathbf{x}_{2}$) of the magnetic variance matrix $M_{\mu v}=\left\langle B_{\mu} B_{v}\right\rangle$ $\left\langle B_{\mu}\right\rangle\left\langle B_{v}\right\rangle$
- The corresponding eigenvalues of $\mathbf{x}_{1}, \mathbf{x}_{2}$, and \mathbf{x}_{3} are $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
- The eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}$, and \mathbf{x}_{3} written as $\widehat{\mathbf{L}}, \widehat{\mathbf{M}}, \widehat{\mathbf{N}}$ represent the directions of maximum, intermediate and the minimum variance of the magnetic field.
- $\widehat{\mathbf{N}}$ is seen as the normal of the current sheet. Both $\widehat{\mathbf{N}}$ and $\widehat{-\mathbf{N}}$ are valid current sheet normal in terms of MVA.

Research Experience and Projects

Calculated current sheet shift distance

$\widehat{\mathbf{n}}=\operatorname{sgn}\left(-\Delta B_{X}\right) \operatorname{sgn}\left(\widehat{\mathbf{v}}_{t} \cdot \widehat{\mathbf{N}}\right) \widehat{\mathbf{N}}$

Shfit Distance: $\Delta d=\left|\overrightarrow{O P^{\prime}}\right| \cos \alpha$
Radius: $R=\sqrt{\left|O \overrightarrow{P^{\prime}}\right|^{2}-\Delta d^{2}}$

Angular uncertainty:

$$
\left|\Delta \varphi_{i j}\right|=\left|\Delta \varphi_{j i}\right|=\sqrt{\frac{\lambda_{3}\left(\lambda_{i}+\lambda_{j}-\lambda_{3}\right)}{(N-1)\left(\lambda_{i}-\lambda_{j}\right)^{2}}}
$$

Image Credit: Yuanzheng Wen

Research Experience and Projects

Case selection criteria

- MAVEN should be located in the Martian magnetotail region, with region confinement $-3 R_{M}<X<-0.5 R_{M}, \rho=\sqrt{Y^{2}+Z^{2}}<1.3 R_{M}$.
- Evident flapping event of the CS should not occur during the crossing, the CS crossing should only occur one time during the magnetotail crossing.
- Steady IMF criteria: 1. Angele between B1 and B2 less than $30^{\circ} 2$. $\frac{2 \| \mathbf{B}_{1}\left|-\left|\mathbf{B}_{2}\right|\right|}{\left|\mathbf{B}_{1}\right|+\left|\mathbf{B}_{2}\right|}<0.2$ (Rong et al., 2014, 2016)
- No large fluctuations should occur in the upstream IMF.
- To avoid the potential influence of the crustal magnetic fields, the CS crossing should be above at least 400 km when MAVEN is flying above the strongest crustal magnetic field regions.

Research Experience and Projects

Selected good current sheet crossing cases

Examples of good current sheet crossing cases. CS crossing is identified by change of Bx sign and enhancement of ion, electron flux.

The Parameters Regarding Martian Magnetotail Current Sheet Crossing

Time	Location ${ }^{\text {a }}$ (R_{M})	IMF ${ }^{\text {b }}$	Cone Angle ${ }^{\text {b }}$	\widehat{n}	$\lambda_{2} / \lambda_{3}$	Δd^{c}
2014/12/29 15:32:44	$(-1.07,0.74,-0.16)$	(2.43, -0.56, -0.66)	20°	(0.48 0.79-0.35)	3.93	$0.73 \in[0.72,0.74]$
2015/09/03 21:52:51	(-1.19, -0.42, -0.38)	$(-3.10,6.52,0.19)$	115°	(-0.11 0.73-0.68)	10.81	$-0.05 \in[-0.08,-0.02]$
2018/02/19 00:47:08	(-0.68, -1.12, -0.20)	$(-1.94,-0.63,1.24)$	145°	(0.12 0.18 0.98)	3.95	$-0.40 \in[-0.50,-0.29]$
2014/12/22 09:28:21	$(-1.21,0.55,-0.15)$	(2.77, -3.24, -3.20)	59°	(-0.03 0.97-0.24)	11.91	$0.57 \in[0.56,0.57]$
2015/08/31 20:01:48	(-1.17, -0.49, -0.34)	(0.47, 4.43, -0.98)	84°	(0.22-0.47-0.85)	10.28	$0.53 \in[0.52,0.55]$
2015/09/29 09:09:28	$(-1.55,0.14,-0.41)$	(0.23, 2.19, -0.06)	84°	(-0.01 0.40-0.92)	11.59	$0.43 \in[0.430,0.432]$
2018/04/03 11:23:17	$(-1.33,0.15,-0.4)$	(-0.19, -2.13, -0.06)	95°	(-0.23-0.37-0.90)	8.17	$-0.43 \in[-0.43,-0.43]$
2014/12/04 06:00:12	(-1.47, 0.05, -0.25)	$(-0.58,3.47,-1.56)$	99°	(0.18 $0.45-0.88$)	1.64	$0.25 \in[0.23,0.25]$
2017/07/09 19:53:59	(-1.32, 1.08, -1.52)	$(-3.10,6.52,0.19)$	$103{ }^{\circ}$	(-0.29-0.93 0.23)	4.47	$-0.68 \in[-0.85,-0.43]$
2014/12/05 09:40:14	(-1.30, -0.10, 0.13)	(-3.84, 2.98, -0.87)	141°	(0.23 0.97-0.09)	5.33	$-0.11 \in[-0.12,-0.10]$
2016/02/02 11:02:04	$(-1.00,-0.82,-0.31)$	$(-4.73,0.61,1.73)$	$159{ }^{\circ}$	(0.33 0.85 0.42)	5.40	$-0.87 \in[-0.88,-0.87]$
2016/03/05 03:56:42	(-1.20, -0.12, 0.48)	(-1.34, -0.29, -0.59)	$154{ }^{\circ}$	(-0.73 0.1-0.68)	9.31	$-0.49 \in[-0.50,-0.49]$
2018/03/14 12:41:51	$(-1.17,-0.40,-0.39)$	$(-2.04,1.41,0.53)$	$144{ }^{\circ}$	(0.17 0.91 -0.37)	10.71	$-0.22 \in[-0.25,-0.20]$
2016/08/15 20:30:25	(-1.10, -0.12, 0.37)	(3.28, 0.70, 1.31)	24°	(-0.35-0.67 0.65)	15.52	$0.34 \in[0.34,0.35]$

Research Experience and Projects

Correlations between CS shifted distance and IMF cone angle

Diagram illustrating the IMF cone angle Liu et al., (2021)

CS shifted distance as a function of the IMF cone angle

Research Experience and Projects

Statics of the current sheet structures of the Martian magnetotail

- Statistics is carried out in Mars-Solar-Electric (MSE) coordinates.
- X axis: X in MSO coordinates. Z axis: $\mathbf{E}=-\mathbf{v}_{\mathrm{SW}} \times \mathbf{B}$. Y axis: $\mathrm{X} \times \mathrm{Z}$.
$Z_{M S E}$ axis is basically contained in the current sheet plane which is nominally located at $Y_{M S E} \sim 0$.
- Selected orbits meet the steady IMF requirements (1445 crossings)
- Set up the MSE coordinates using upstream IMF $\left(\mathbf{B}=\left(\mathbf{B}_{1}+\mathbf{B}_{2}\right) / 2\right)$, region confinement ($-3 R_{M}<X_{\text {MSE }}<-0.5 R_{M}$)
- Transformed the magnetic field data into MSE coordinates
- IMF cone angle $<60^{\circ}$ (500 crossings), IMF cone angle $>120^{\circ}$ (260 crossings), $70^{\circ}<\mathrm{IMF}$ cone angle $<110^{\circ}$ (439 crossings)
- Computed the contours of $B_{X}=0$ to present the average configurations of the current sheet structures in the magnetotail.

Research Experience and Projects

Statics of the current sheet structures of Martian magnetotail

Average configurations of current sheet structures under different IMF cone angles. (with strong crustal fields omitted)

Research Experience and Projects

Statics of the current sheet structures of Martian magnetotail

Average configurations of current sheet structures under different IMF cone angles.
(with strong crustal fields)

Research Experience and Projects

Statics of the current sheet structures of Martian magnetotail

Average configurations of current sheet structures under different IMF cone angles

$$
\left(-3 R_{M}<X_{M S E}<-0.5 R_{M}\right)
$$

Research Experience and Projects

Statics of the current sheet structures of Martian magnetotail

-15	-10	-5	0	5	10	15

Average configurations of current sheet structures under different IMF cone angles

$$
\left(-1.5 R_{M}<X_{M S E}<-0.5 R_{M}\right)
$$

Research Experience and Projects

(a) Solar Max @ Perihelion

(c) Solar Min @ Perihelion

Liemohn et al., (2017)

Research Experience and Projects

Statics of the current sheet structures of Martian magnetotail

Average configurations of current sheet structures under different IMF cone angles. (With different Solar EUV intensity comparisons)

Research Experience and Projects

Conclusions

- There is a systematic Y (i.e., dawn-dusk) asymmetry in the location of the Martian magnetotail current sheet in the modified MSE coordinates.
- The shifted distance of the current sheet is sensitive to the IMF cone angle.
- The asymmetry is controlled by the flow-aligned component of IMF, shifting to the dawn (-Y) during the tailward IMF conditions and to the dusk (+Y) during the sunward IMF conditions.
- The shift found in this study is dominated by the IMF orientation, with influences from the crustal magnetic fields and solar EUV intensity.

Future work

- Analyze ionospheric effects on the current sheet shift.
- Quantitively analyzed the solar EUV intensity effects on CS shift and compare with simulation work (Liemohn et al., 2017)
- TBD

Confidential manuscript submitted to JGR: Space Physics

Statistical investigations of the flow-aligned component of IMF impact on current sheet structure in the Martian magnetotail: MAVEN observations

Yuanzheng Wen ${ }^{\mathbf{1 , 2}}$, Zhaojin Rong ${ }^{\mathbf{2 , 3}}$, Hans Nilsson ${ }^{4}$, Chi Zhang ${ }^{\mathbf{2 , 3}}$, Mats Holmstrom ${ }^{4}$, Dan Tao 1, Guangxue Wang ${ }^{1}$, Yiteng Zhang ${ }^{5}$, Jasper Halekas ${ }^{6}$, Jared Espley ${ }^{7}$
${ }^{1}$ School of Geophysics, Chengdu University of Technology, Chengdu, China.
${ }^{2}$ Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.
${ }^{3}$ College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
${ }^{4}$ Swedish Institute of Space Physics, Kiruna, Sweden.
${ }^{5}$ National Space Science Center, Chinese Academy of Sciences, Beijing, China.
${ }^{6}$ Department of Physics and Astronomy, University of Iowa, Iowa City, USA.
${ }^{7}$ NASA Goddard Space Flight Center, Greenbelt, USA.
Corresponding author: Zhaojin Rong (rongzhaojin@mail.iggcas.ac.cn)

Research Experience and Projects

References

1. DiBraccio GA, Luhmann JG, Curry SM, Espley JR, Xu S, Mitchell DL, Ma Y, Dong C, Gruesbeck JR, Connerney JEP, Harada Y, Ruhunusiri S, Halekas JS, Soobiah Y, Hara T, Brain DA, Jakosky BM. (2018). The Twisted Configuration of the Martian Magnetotail: MAVEN Observations. GEOPHYS RES LETT, 45(10), 4559-4568. doi: 10.1029/2018GL077251
2. Nilsson H, Carlsson E, Gunell H, Futaana Y, Barabash S, Lundin R, Fedorov A, Soobiah Y, Coates A, Fränz M, Roussos E. (2007). Investigation of the Influence of Magnetic Anomalies on Ion Distributions at Mars. SPACE SCI REV, 126(1-4), 355-372. doi: 10.1007/s11214-006-9030-0
3. Nilsson H, Edberg NJT, Stenberg G, Barabash S, Holmström M, Futaana Y, Lundin R, Fedorov A. (2011). Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. ICARUS, 215(2), 475-484. doi: 10.1016/j.icarus.2011.08.003
4. Nilsson H, Stenberg G, Futaana Y, Holmström M, Barabash S, Lundin R, Edberg NJT, Fedorov A. (2012). Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes. Earth, Planets and Space, 64(2), 135-148. doi: 10.5047/eps.2011.04.011
5. Ramstad R, Brain DA, Dong Y, Espley J, Halekas J, Jakosky B. (2020). The global current systems of the Martian induced magnetosphere. NAT ASTRON, 4(10), 979-985. doi: 10.1038/s41550-020-1099-y
6. Vignes, D. et al., The Solar Wind interaction with Mars: Locations and Shapes of the Bow Shock and the Magnetic Pile-up Boundary from the Observations of the MAG/ER Experiment Onboard Mars Global Surveyor. (2000) Geophys. Res. Lett. 27, 49.

Thanks for your attention! Any question?
Acknowledgements to all my supervisors and collaborators

